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1. Abstract
The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three
advantages:  (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization
iteration, (2) it uses a large number of B-spline control points as design variables yet the resulting airfoil shape is fairly smooth, and (3) it
allows the user to make a trade-off between the level of optimization and the amount of computing time consumed.  The robust
optimization method is demonstrated by solving a lift-constrained drag minimization problem for a two-dimensional airfoil in viscous
flow with a large number of geometric design variables.

Our experience with robust optimization indicates that our strategy produces reasonable airfoil shapes that are similar to the original
airfoils, but these new shapes provide drag reduction over the specified range of Mach numbers.  We have tested this strategy on a
number of advanced airfoil models produced by knowledgeable aerodynamic design team members and found that our strategy produces
airfoils better or equal to any designs produced by traditional design methods.
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3. Introduction
The present research seeks optimization methods that are robust in the sense that they produce solutions insensitive to changes in the
input parameters.  Furthermore, the methods must be able to find solutions by using a moderate number of high-fidelity disciplinary
analyses.  This second requirement acknowledges the fact that disciplinary analyses (e.g., computational fluid dynamics (CFD)) can be
computationally expensive; an optimization method that requires thousands of function evaluations has limited usefulness in the current
design environment.  Finally, there is a need for a conservative approach that achieves a robust design in the neighborhood of a baseline
configuration. This approach is useful to the design team that has a good baseline design developed by traditional methods.

The concept of robust optimization is demonstrated by using a 2-D airfoil shape optimization problem. Hicks and Vanderplaats studied a
simplified version of this airfoil problem in 1977 [1]. For example, consider Fig. 1, reproduced from Ref. 1.  Hicks and Vanderplaats
demonstrate that a direct optimization approach that minimizes drag at one Mach number (e.g., M = 0.75) actually increases drag at
nearby Mach numbers (e.g., M = 0.70).  The authors also present evidence showing that an inverse optimization approach that adjusts the
airfoil shape to match some ideal pressure distribution will display similar point-optimization behavior. The conclusion is that changes in
airfoil shape that are advantageous at one Mach number may cause poor performance at other Mach numbers.  This result is especially
apparent for supercritical airfoil designs because the relationship between wave drag and free stream velocity is quite nonlinear for high
subsonic design Mach numbers.

To overcome off-design performance degradation, many authors have proposed variations of multipoint optimization [2−5].  However,
minimizing a weighted sum of objective functions can produce many different solutions, depending on the choice of the weights and the
number and spacing of the multiple design points.  Also, there is no guarantee that any of the solutions will yield desirable airfoil shapes
[2, 3].  Moreover, several authors suggest that if the number of design points n is much smaller than the number of design variables m
(i.e., n << m), the resulting airfoil will be misshapen [2–4].

Li, Padula, and Huyse discuss the shortcomings of multipoint optimization and propose new robust optimization algorithms [4, 6].  The
goal of robust optimization is to find the airfoil shape that minimizes the mean of the drag coefficient over a range of free-stream Mach
numbers, Mmin < M < Mmax, and keeps the performance fluctuation as low as possible.  The standard robust optimization model of
minimizing the mean and the variance can be used for this purpose:
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where Cl* is the required lift, D is a set of m airfoil geometric design variables, Cl is the lift coefficient, and Cd is the drag coefficient.
Both Cl and Cd are functions of angle of attack α and free-stream Mach number M. Note that α is the angle of attack that satisfies Eq.(2)
for each M.  The mean and variance of Cd are defined as follows:
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where p(M) is the probability density function of M.  In this paper, we choose a uniform distribution to capture the fact that the design
team desires a simultaneous reduction in drag over the range of Mach numbers.  Ref. 4 discusses other choices of p(M).

One attractive option for solving the 2-D airfoil problem is presented in Ref. 6, which uses the CFD analysis of Ref. 7. The former
research demonstrates the potential importance of robust airfoil optimization but solves a simplified problem by choosing the Euler
inviscid option in the CFD analysis code, a poor initial guess, a coarse 2-D unstructured grid, and no airfoil thickness constraints.  The
present study will test the robust optimization method with a larger number of design variables, viscous CFD analysis, a finer grid, a
good initial guess, and realistic design constraints.

4. General Solution Strategy
The robust airfoil optimization strategy consists of the following steps:

1. Select n Mach numbers, M1, M2, …, Mn.
2. Find the smallest feasible angle of attack for each Mach number.
3. Calculate lift, drag, and their gradients.
4. Formulate a linear subproblem.
5. Adjust the trust region step size to achieve predetermined drag reduction.
6. Solve the linear subproblem and update values of design variables.
7. Decide whether to terminate or iterate from step 1.

The methods described in Refs. 4 and 6 are similar to each other but differ in steps 1, 4, 5, and 6.  In this paper, we will demonstrate the
method described in Ref. 6.

Step 1 in the general strategy can vary in the number of Mach points selected and in the method of selection.  Ref. 4 favors a random
selection of Mach points in order to avoid the point-optimization phenomenon.  Ref. 6 favors a fixed set of Mach points because the
convergence properties associated with randomly selected points are difficult to anticipate. The Mach points Mi are selected from a range
[0.68, 0.77] for all results presented in this paper. The nominal set of points is {0.68, 0.71, 0.74, 0.76}. The range Mi ∈ [0.68, 0.77] is
selected because it contains typical cruise Mach numbers for commercial transports.  The specific points are the same as those chosen by
Drela [2].

Step 2 involves a line search for the smallest value of α which satisfies the lift constraint at each of the selected Mach points.  This task is
simple because the relationship between Cl and α is quite linear.  On the first iteration, a line search is always necessary.  For subsequent
iterations, the linear subproblem usually provides very accurate estimates of the values of the smallest feasible α, and a line search is
therefore unnecessary.

Step 3 is the calculation of the lift and drag at the design points, and their derivatives with respect to changes in geometric design
variables and the angles of attack.

Step 4 involves formulating the linear subproblem. Of all the possible solutions to the linear subproblem, we seek the one that minimizes
the drag at all the design conditions simultaneously and proportionally while making the smallest change in the design vector in a least
norm sense. The linear subproblem can be summarized as:
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along with some geometric constraints.

Here the notation < a, b > indicates the dot product of vectors a and b, Cd,i is the current value of the drag coefficient evaluated at the ith

design point, and Cd i
new

,  is the linear prediction to the value of Cd,i after the optimization step. The additional geometric constraints can be
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tailored to meet the needs of the design team.  In this paper, geometric constraints are used to enforce the desired airfoil thickness at spar
locations and at the maximum thickness location.  Also, the bounds δj are adjusted in step 5 to set the trust region size.

This linear subproblem seeks a smart descent direction that reduces each individual Cd,i to achieve a reduction of the mean and variance
of the drag.

Step 5, the determination of trust region step size, is crucial and requires the most explanation (see Ref. 6 for complete details). The size
of each optimization step is controlled by a tuning parameter γmin, which specifies the desired decrease in Cd at each design point.
Because the computational cost of solving the approximate optimization subproblem is inexpensive compared with the cost of CFD
analysis, the subproblem can be solved with several different values of trust region size δ and then the final trust region size can be
adjusted to satisfy this additional constraint:
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In this paper, γmin = 0.03.  The setting is recommended in Ref. 6 and appears to be a good compromise between rapid convergence and an
attainable rate of decrease.  Ref. 8 discusses the use of this parameter to meet the needs of a design team.

Step 6 involves the solution of the approximate optimization subproblem and the update of the design variable values.  The current paper
uses a quadratic programming solver to find the least norm solution of the linear program given in Eqs.(5)–(9).

Ideally, step 7 uses a termination criterion based on the comparison between the predicted decrease and the actual decrease delivered by
step 6.  For the purpose of demonstrating the technology, we set the maximum number of iterations based on the number of CFD
analyses that we could afford.  Therefore, step 7 is not implemented.

The algorithm described in steps 1–7 is very similar to sequential linear programming; however, it has three key unconventional
elements. These elements are employed to find a smart search direction that takes into account the fact that only a limited amount of
information (i.e., the drag at a few design points) is given for solving the robust optimization problem. The unconventional elements are:
(1) a predetermined rate of linearized drag reduction to ensure a proper trust region size, (2) the adaptive minimax formulation to ensure
simultaneous drag reduction at all the design points, and (3) the least norm solution of the linear programming subproblem for an
efficient trade-off between the shape modification and the performance improvement. The combination of these three elements yields
fairly smooth airfoils during optimization and prevents severe off-design performance degradation.

5. Results and Conclusions
The lift-constrained 2-D airfoil optimization problem stated in Eqs.(1) and (2) is used to test the robust optimization approach. The
general optimization strategy is tested on a realistic airfoil design by solving fully turbulent Navier-Stokes equations and the
corresponding discrete adjoint equations. The initial RAE2822 airfoil is shown in Fig. 2.   Thirty-five bounded geometric design
variables, Dj, shown as circles in Fig. 3, are the B-spline control points used to create a wide variety of smooth 2-D airfoil shapes. The
leading edge and trailing edge points are fixed so that the chord length does not change, but the y coordinates of the top and bottom
surfaces can change as long as the lift constraint given in Eq. (2) is satisfied.  Additional constraints on Dj are included so that the
maximum airfoil thickness does not decrease, the thickness at two spar locations is maintained, and the spline points near the trailing
edge change smoothly.

Figures 4–7 show typical optimization results for the case where p(M) is a uniform distribution. Fig. 4 shows the change in drag with
optimization iteration at the four design points. These 10 optimization iterations required approximately 100 calls to the full CFD and
sensitivity analysis code. Notice that each optimization iteration yields some improvement; thus, the method is applicable even when the
CFD analysis is computationally expensive.  Note that the points plotted in Fig. 4 represent the solutions to viscous CFD analyses not the

drag counts predicted by linear approximation (i.e., Fig. 4 shows Cd,i × 104 rather than Cd i
new

, × 104). Similarly in Fig. 5, drag profiles are
plotted before and after 10 iterations of the general strategy. Drag counts for the 10th iterate are obviously less than those for the original
airfoil, although both airfoils provide the required lift, Cl

* = 0.733.  Fig. 5 shows that drag is reduced at the four design points (i.e., Mi =
0.68, 0.71, 0.74, 0.76).  More significantly, Fig. 5 shows that drag is reduced at off-design points that are not sampled during the
optimization strategy.  The improvement is greatest at the highest Mach number and more modest near M = 0.74, which is the design
Mach number for the original airfoil.  Fig. 6 shows the difference in shape between the original and the optimized airfoil. The dashed
vertical lines indicate the chordwise position of thickness constraints.  The first and third vertical lines correspond to the location of
structural spars and the middle line indicates the maximum thickness location.  In these three locations, the y coordinates of the airfoil
may change, but the distance from the bottom to the top of the airfoil does not change. Finally, Fig. 7 shows the pressure distributions
before and after 10 optimization iterations.  This plot indicates that the drag reduction is due to significant changes in pressure
distribution caused by small changes in the airfoil shape. Only the pressure distribution at M = 0.76 is reproduced, although the other
pressure distributions were examined and exhibit similar characteristics.
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Our experience with the general solution strategy is that it produces reasonable airfoil shapes that are similar to the original airfoils, and it
provides consistent drag reduction over the specified range of Mach numbers.  We have tested this strategy on a number of advanced
airfoil models produced by knowledgeable aerodynamic design team members.  We have been able to provide improved designs that met
all the criteria established by the teams.  The improved designs were evaluated by using more than one CFD analysis code and proved to
be better or equal to any designs produced by traditional design methods.  In working with the aerodynamic teams, we discovered that the
optimization strategy reported herein can be modified to give the user more control over the outcome.  Ref. 8 contains a thorough
discussion of those modifications.

The robust optimization strategy has been demonstrated for an optimization problem with one uncertain parameter, cruise Mach number.
The authors believe that this strategy can be extended to problems with several uncertain parameters.  The challenge is to predict the
expected decrease in the drag with a limited number of expensive disciplinary analyses.  One approach is to screen the candidate
uncertain parameters and fix the values of parameters that have a less significant effect on the objective.  Another approach is to use an
efficient sampling scheme such as Latin hypercube sampling.  These approaches should be successful as long as the lift and drag
information at the sampled points reflects the overall trend of lift and drag.

It is concluded that robust optimization is an important tool for multidisciplinary design.  It is useful when some of the design parameters
(e.g., operating conditions) are inherently variable, when some of the design specifications are uncertain (e.g., maximum payload), or
when some of the cost drivers are subject to change in the future (e.g., fuel prices).   The importance of robust optimization increases
when these uncertain parameters have a strong nonlinear effect on the objective function and constraints.  An interesting example of
robust optimization is provided in this demonstration of airfoil shape optimization.  In the example problem, cruise Mach number is the
uncertain operating condition with nonlinear effects on lift and drag of the airfoil.
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Figure 1. Drag profiles for baseline and modified airfoil
(reproduced from Hicks and Vanderplaats, 1977)

Figure 2. Grid used to solve Navier-Stokes equations

Figure 3. Parameterization of RAE2822 airfoil by cubic B-
splines indicating 35 control points

Figure 4. History of drag reduction at the four design Mach
numbers

Figure 5. Postoptimization predictions of drag reduction over
the specified Mach range

Figure 6. Optimized airfoil shape compared with original
RAE2822 airfoil
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Figure 7. Pressure distributions on RAE2822 and optimized
airfoil for highest Mach number design point


